Supply Chain Scheduling Using Double Deep Time-Series Differential Neural Network

نویسندگان

چکیده

The purpose of supply chain scheduling is to be able find an optimized plan and strategy so as optimize the benefits entire chain. This paper proposes a method for processing tightly coordinated task problems based on improved Double Deep Timing Differential Neural Network (DDTDN) algorithm. Semi-Markov Decision Process (SMDP) modeling state characteristics action problem realized, transform into multi-stage decision problem. deep neural network model can help fit value function, unique reinforcement learning online evaluation mechanism realize selection best combination, it under condition only stator time. Finally, optimal group obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vehicle's velocity time series prediction using neural network

This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...

متن کامل

vehicle's velocity time series prediction using neural network

this paper presents the prediction of vehicle's velocity time series using neural networks. for this purpose, driving data is firstly collected in real world traffic conditions in the city of tehran using advance vehicle location devices installed on private cars. a multi-layer perceptron network is then designed for driving time series forecasting. in addition, the results of this study a...

متن کامل

Cyclic Scheduling for Supply Chain Network

This paper concerns the domain of Supply Chain Network Infrastructure (SCNI) usually observed in the multimodal transportation systems such as Multimodal Passenger Transport Systems supported by lines of buses, trains, etc., and focuses on the scheduling problems encountered in these systems. SCNI can be modeled as a network of lines providing cyclic routes for particular kinds of stream-like m...

متن کامل

Availability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models

In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...

متن کامل

Time Series Forecasting using Evolutionary Neural Network

Efficient time series forecasting (TSF) is of utmost importance in order to make better decision under uncertainty. Over the past few years a large literature has evolved to forecast time series using different artificial neural network (ANN) models because of its several distinguishing characteristics. This paper evaluates the effectiveness of three methods to forecast time series, one carried...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: E3S web of conferences

سال: 2021

ISSN: ['2555-0403', '2267-1242']

DOI: https://doi.org/10.1051/e3sconf/202125703038